Antimicrobial nanopackaging for food products: Prospects and limitations

Jasim Ahmed, Ph.D. Environment & Life Sciences Research Center Kuwait Institute for Scientific Research KUWAIT

> *The School of Packaging Michigan State University, USA

Layout of the presentation

- Importance of Antimicrobial Packaging
- Nanoparticles as Antimicrobials
- Nanopackaging
- Essential oil as Antimicrobials
- Combinations of NPs and EOs
- Applications and limitations

Our da	Company	Product #	Death	Fatal injury	Loss
	Maple Leaf Canada-2008 Listerosis	220	13	38	\$20 Million
	<i>E. Coli</i> –outbreak 2011 Germany	Vegetables	22	2400	Huge
	US in 2019	Beef/basil/ tahini	-	_	_
	Turkey 2019	Spinach	??		

Food borne disease

Food Packaging and Antimicrobial agents

Ref: Huang, T.; Qian, Y.; Wei, J.; Zhou, C. Polymeric Antimicrobial Food Packaging and Its Applications. Polymers 2019, 11, 560.

Why do we need Biodegradable Packaging?

World

A tsunami of plastic waste is about to be unleashed on the world, because China will no longer be the West's rubbish dump

China's decision to stop importing about half the world's scrap looks set to collapse the recyclables market and have profound implications for household recycling schemes around the globe

Best Published: 12:11pm, 21 Jun, 2018 *

Packaging Nanotechnology

 <u>Packaging Nanotechnology is a</u>n interdisciplinary area of research, development & industrial activity which <u>involves the design</u>, <u>manufacture</u>, processing and application of packaging materials filled with particles with nanometer dimensions.

-Improved packaging: NPs mix into the polymer matrix to improve the gas barrier properties e.g., polymer/clay nanocomposites.

-Active packaging: NPs interact directly with the food or the environment to allow a better protection of the food, such as Ag NP as potent antimicrobial agents.

Shapes of nanoparticles

Nanocrystal

Nanosheets

Fullerene

Nanoshell

Nanowire

Polymeric Nanoparticle

Nanocapsule

Carbon

Nanotube

Dendrimer

Liposome

Types of nanoparticles used in food packaging

Inorganic

- Metals and metal oxides, clay nanoparticles & many more.
- Ag, Cu, CuO, ZnO, TiO2, MgO and Fe_3O_4

Organic

- Phenols, halogenated compounds, quaternary ammonium salts, plastic polymers,
- Natural polysaccharide or protein materials such as chitosan, chitin, cellulose and whey protein isolates

Nanoparticles as antimicro NPs demonstrated the effective bactericio

 Because of their extremely large surface better contact with the microorganism.

- Close or direct contact with the microorganism is an essential requirement for the mechanisms of action of the antimicrobial agents
- The contact can happen:

i) For a nonvolatile substance: it diffuse and solubilize into the food surface in which the microorganisms are located.

ii) For a volatile substance: the headspace around the surface of the food and in the food itself absorb by indirect contact.

Nanoparticles and microbial inactivation mechanism

- NPs can inhibit microbial growth by:
 - a) Influencing the protein structure by denaturation or alteration
 - b) Altering the cell membrane proteins or membrane lipids
 - c) Blocking the synthesis of cell wall components
 - d) Preventing replication, transcription, and translation of nucleic acids
 - e) Disrupting cellular metabolism

Nanocomposites (NC) and its formation

NC forms by incorporation of particulate fillers (e.g. clay/metal) into neat polymer matrix.

Nanocomposite Preparation techniques:
Solvent casting
Simple process
Melt extrusion
Heat above melting point and extrude
In situ polymerization

Nanocomposite film preparation by solvent casting

Antimicrobial-nanocomposite preparation by extrusion

Extrusion of PLA-based films & Packaging Development

Biodegradable Antimicrobial Nano-packaging-My lab

<u>Materials</u>

• Polylactides (PLA)

Brittle, poor in thermo-mechanical properties Needs property improvement

• Agar

Nanoparticles

- Zinc Oxide (ZnO)
- Surface treated ZnO
- Ag/Cu Alloy
- Graphene Oxide (GO)
- Nanoclay

<u>Plasticizers</u>

- Polyethylene glycol (PEG)
- Glycerol

Characterization of composites and films

Thermomechanical and microstructural Properties

- Melt Rheology
- Thermal Analysis (DSC & TGA)
- Tensile Measurement
- Microstructure
- -SEM/TEM/AFM
- -XRD

Film Barrier Properties

- Water vapor transmission rate (WVTR)
- Oxygen transmission rate (OTR)

Antimicrobial Analysis

- Against gm +ve test organisms
- Against gm -ve test organisms

⁻FTIR

Nanoparticles dispersion in polymer system

Distribution, property improvement and safety are the main keys for the nanoparticles.

Poly(butylene adipate-co-terephthalate)/SiO2 Films

Ref: Venkatesan & Rajeswari, 2015 Silicon

Melt rheology of Biopolymer Films

- Melt rheology provides a deep scientific and engineering understanding of how thermoplastics behave at melt whilst being processed.
- Study provides information on the processability of polymers or composites and also predict the dispersibility of fillers in the composite.

Melt rheology of PLA/NC films at 190 °C

J. Ahmed et al. Thermochimica Acta 659 (2018) 96-104

PLA/PEG/ZnO melt rheology

Plasticization of Polyethylene glycol to PLA and the Tg

Effect of metallic NP concentration on thermal properties of PLA/PEG NC films

Effect of NP on melting and crystallization of PLA/PEG/NP

Mechanical properties of biocomposite films

P

ample		Thick	ness (mm)	Ten	sile strength (MPa)	EAB (%)	Modulus (MPa)
LA/PEG	G (80/20)	0.	52±0.03		18.91±0.91	12.33±	1.28	1312.3±28.68	
LA/PEG	6/2% ZnO-50nm	0.	63±0.02		24.41±1.31	5.46:	±1	1613.23±31.5	
LA/PEG	6/2% ZnO-100nm	0.	69±0.03		22.63±0.86	7.96±0).55	1541.8±23.69	
LA/PEG	6/2% Ag-Cu-100nm	0.	71±0.05		23.59±1.1	10.93±	2.18	1502.86±13.62	
	Film sample		Thicknes (mm)	s	Tensile streng (MPa)	jth		EAB (%)	
	Control FSG		0.061±0.00	02 ^e	19.2±1.2°			54.2±2.1ª	
	FSG/0.5% NPs	Ag-Cu	0.069±0.00	03 ^d	20.4±0.8 ^{bc}			<i>50</i> .7±3.8 ^{ab}	
	FSG/1% Ag-C	u NPs	0.077±0.00	0 2 °	23.9±2.6 ^b			45.4±2.4 ^{bc}	
	FSG/2% Ag-C	u NPs	0.089±0.00	04 ^b	2 8.6± 1 .7ª			40.6±3.9°	
	FSG/4% Ag-C	u NPs	0.098±0.00	02 ^a	19.6±3.1°			32.9±2.8 ^d	

Transparency of agar and fish skin gelatin films with Ag-Cu NPs

Barrier properties of nanocomposite films

Sample

Crab shell chitosan/GO

WVTR $gm/[m^2 - day]$

CS	22.4±1.05 ^a	8.60±0.43 ^a	
CS/0.5% GO	20.1±0.82 ^b	7.26±0.56 ^b	
CS/1% GO	15.7±1.65°	5.70±0.36°	
CS/2% GO	9.8±0.68 ^d	2.99±0.42 ^d	

OP (cc mm/m² d atm)

J. Ahmed et al. / Food Hydrocolloids 71 (2017) 141-148

Antimicrobial activity of ZnO/PLA films

Arfat et al. / International Journal of Biological Macromolecules 101 (2017) 1041-1050

Venkatasubbu et al. / Colloids and Surfaces B: Biointerfaces 148 (2016) 600-606

Nanoparticles as AMB agents at a glance

Carbohydrate Polymers 157 (2017) 65-71

Conclusions of nanopackaging

- Property improvement Excellent
- Antimicrobial properties Moderate

Essential oils and microbial inactivation

Biodegradable Antimicrobial Nano-packaging

<u>Materials</u>

- Polylactides (PLA)
- Chitosan
- Gelatin
- Hydrocolloids
- Agar

Essential oils

• Clove

Cinnamon

• Garlic

<u>Plasticizers</u>

 Polyethylene glycol (PEG)

• Glycerol

PLA/PEG/Essential oil based films by solvent casting

PLA + PEG

- \rightarrow
 - Essential oil

Active film

PLA film

PLA/PEG film

Antimicrobial Properties of PLA-based films

In vitro studies

- *Staphylococcus aureus* (gm +ve) and *Campylobacter jejuni* (gm –ve)
- -Agar diffusion method
- -Liquid incubation method

PLA/EO films were tested with:

- Clove essential oil
- Cinnamon essential oil
- Garlic oil

Zone of inhibition indicated by black circle

Melt rheology of PLA/PEG/Cinnamon oil

EO-based film properties

		a)		
Table 1				
Thickness and mechanic	al properties of pla			
Sample	Thie			
PLA/PEG (90:10)	0.08			
PLA/PEG/25% CEO	0.10			
PLA/PEG/50% CEO	0.12			
Table 3 Thermal properties of pla	asticized PLA films			
Sample	$T_{g}(^{\circ}C)$		S. A. P. S. S.	
PLA:PEG (90:10)	39.30 ± 0.27			1
PLA/PEG/25% CEO	16.42 ± 0.32	1 21- 1 2 2 F - 3		- A. S. A. S.
		The second development	and the second second	and the second second
PLA/PEG/50% CEO	6.81 ± 0.36c	State of the second state	30 Sectors and	A SEASON
PLA/PEG/50% CEO Values are given as mear	$6.81 \pm 0.36c$ n ± SD (n = 3).			

1 В (%)		Tensile modulus (MPa)
5.37 ±	3.98c	797.90 ± 12.50a
0.60 ±	6.96b	382.97 ± 6.51 b
65.29 :	<u>+</u> 8.72a	256.88 ± 1.70c
	<i>Н</i> _с (Jg ⁻¹)	% X _{cc}
1	$H_{\rm c}({\rm Jg}^{-1})$ 22.56 ± 0.42a	% X _{cc} 32.86 ± 0.64a
a	$H_c(Jg^{-1})$ 22.56 ± 0.42a 18.98 ± 0.14b	% X _{cc} 32.86 ± 0.64a 27.66 ± 1.26b

What should be the next?

- Tailoring of food packaging using a combination of NPs and EOs.
- EO-based films have limitations to deliver the desirable mechanical and barrier properties
- NPs do have the same problem with the flexibility of the film and mostly the antimicrobial property

SEM of surface and cross-section of PLA/GO/clove oil films

Control PLA/PEG

PLA/PEG/30% CLO

PLA/PEG/1% GO

PLA/PEG/1% GO/30% CLO

Arfat et al. / International Journal of Biological Macromolecules 107 (2018) 194–203

Active Chicken Meat Packaging Based on Polylactide Films and Bimetallic Ag–Cu Nanoparticles and Essential Oil

Jasim Ahmed D, Yasir Ali Arfat, Anibal Bher, Mehrajfatema Mulla, Harsha Jacob, and Rafael Auras

3D-Printing of Biopolymers

Food Hydrocolloids 98 (2020) 105256

Contents lists available at ScienceDirect

Food Hydrocolloids

journal homepage: www.elsevier.com/locate/foodhyd

Check fo

Zinc oxide/clove essential oil incorporated type B gelatin nanocomposite formulations: A proof-of-concept study for 3D printing applications

Jasim Ahmed^{a,*}, Mehrajfatema Mulla^a, Antony Joseph^a, Mohammed Ejaz^a, Mohammed Maniruzzaman^{b,c}

^a Food and Nutrition Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat, 13109, Kuwait

^b School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QJ, UK

^c Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, Stop A1920, Austin, TX, 78712, USA

3D-Printing of Biopolymers

Packaging and High-pressure processing

Food Control 78 (2017) 160-168

CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL

Fig. 2. Growth of S. Typhimurium in chicken samples packed with PLA/PEG, PLA/PEG/CIN1, PLA/PEG/CIN2, PLA/PEG/CIN3, PLA/PEG/CIN4 films and treated at a) 0.101 MPa b)

CONCERNS: Nanoparticle migration into food

- The migration of NP from different types of NCs into food simulants showed NP migrated into food simulants, but also that the migration was food and heating dependent.
- Acidic food and the classical oven presenting the highest migration level.
- The release of the detached NP from the composites, and dissolution of metal ions upon oxidation.

- The critical parameter driving the migration was the percentage of NP in the NCs more than particle size or storage temperature and time.
- ICPMS data mostly indicated metal migration appears to be below current migration limits established by the EU legislation.

Safety of nanoparticles

- The European Food Safety Authority (EFSA) panel has strong reservation about products for food packaging and food supplements that contain NPs unless authorized.
- Recommendations are not to exceed 0.05 mg/L in water and 0.05 mg/kg in food.
- EFSA recommends in vitro genotoxicity, absorption, distribution, metabolism and excretion tests are required by manufacturers.
- The FDA recommends that manufacturers should study and prepare a toxicological profile for each container with nanomaterials.
- The EPA prohibited the sale of plastic food containers with NPs produced by an American company because their products have not been tested according to USFDA regulations.
- At the moment Canada does not have any regulation on nanomaterials and in many other countries only incomplete food safety regulations are introduced.

At the end.....

- Still it needs time to understand the fate of NPs in the environment and the human body.
- Extensive toxicological studies required for the implementation.
- Bionanoparticles could be used to get the benefits.

Acknowledgments

- Kuwait Foundation for the Advancement in Sciences (KFAS)
- Kuwait Institute for Scientific Research (KISR)
- My Research group
- Prof. Rafael Auras, MSU
- The Congress Organizer